R&D Activities


WEPROG's application, the MSEPS system, requires continuous research and development in both meteorological problems as well as computer technology, as the 3D-numerical modelling of the weather is strongly dependent on the computing technology available to solve the numerical functions inside the weather models. The efficiency of the programming source code is also dependent on the processor technology and hence the solvable problem size. The larger the model areas become, the more computing capacity is required. To keep highest performance in a cost effective framework is an ongoing challenge that requires continuous testing and recoding of software to be able to make use of technology advances.

WEPROG is taking on this responsibility together with their partners and collaborators to always be at the forefront of available technology and to be able to deliver continuous improvements over time. The fact that real-time operations are practised with customers on almost all continents is challenging, but also gives a unique opportunity to identify issues and solve problems at places far away from certain target areas, which however may be affected by such problems. One example are the Rocky Mountains in Alberta that have influence on the weather development in Northern Europe. By solving wind flow issues over the Albertan part of the Rockies, not only the Canadian, but also the Danish and German customers will see improvements in forecast quality.

WEPROG also actively participates and coordinates research projects. In fact, the first project and starting point of WEPROG was the MELTRA project (2003-2006), which was funded by the Transmission System Operator for the western part of Denmark ELTRA (now Energinet.dk).


Current and recent projects, where WEPROG is involved

IEA Wind Task 36: Wind Power Forecasting, 2016-2019.
The IEA Task 36 Wind Power Forecasting under the IEA Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems (IEA Wind) focuses on improving the value of wind energy forecasts to the wind industry. There are three distinct areas of challenge in forecasting wind power. The first is in the continuing effort to improve the representation of physical processes in forecast models through both improved initialization and improved parameterizations. The second area is the representation of uncertainty, the lack of uniform benchmark criteria and the lack of benchmarks or comparison datasets. A third area is representation, communication, and use of these uncertainties to industry in forms that readily support decision-making in plant operations and electricity markets. This Task will facilitate coordination of efforts in all three of these areas and will work to define best practices for model evaluation and uncertainty communication.
Task Webpage: http://www.ieawindforecasting.dk
Task Description can be found here
WEPROG roles:
Member of the Mangement group and Co-leader Workpackage 3 
Task leader of WP3.1: State of the Art in using Uncertainty Forecasting in the power industry

Task Co-lead Wp2.1: Design of benchmark exercises: best practice

Publications can be found here:  WEPROG specific Publications or IEA overall Task 36 Publications

SMART GRID SOLAR: 
Photovoltaics is like wind energy an intermittent source of energy, dependent on the sun to shine. Therefore, it cannot or only to a limited amount be used to cover base load requirements in the energy mix. In a future scenario of Bavaria, where PV covers 25% or more of the electricity demand, it is important that ways and methods are found to manage electricity demand and develop storage possibilities. In first instance this is important for grid stability, in the next step storage will become an important means to make PV generated electricity capable of delivering base load.   
The objective of the project is to develop methods and technologies to enhance the amount of PV and other renewable energies and to enable these energy sources to deliver enery in a sustainable way into the grid. 
Project Coordinator: Bavarian Center for Applied Energy Research (ZAE) 
Projekt Hompage: http://www.smart-grid-solar.de
Projekt description: Dokument
Participation of WEPROG in the work package: Informations- und Kommunikationstechnik (IKT): Delivery of real-time forecasts (2015-2017)


RAVE - Grid Integration of offshore wind farms,
Germany (2008-2011)
http://www.rave-offshore.de

The Grid integration of offshore wind parks project is one out of 15 projects of the RAVE - Research at Alpha Ventus - research activities supported by the German Federal Ministry for the Environment (BMU) in order to accelerate the offshore wind energy development at the offshore test site "alpha ventus" with the overall objective to reduce the costs of offshore wind energy deployment in deep water. The offshore wind farm alpha ventus is located 45 km north of the island Borkum in the Northsea next to the research platform "FINO 1". It will comprise twelve 5MW offshore wind turbines.

WEPROG's final Project report can be downloaded here (only German version available).

AESO Wind Power Forecasting Pilot Project , Alberta Canada (2007-2008)
http://www.aeso.ca/gridoperations/13825.html

The purpose of the pilot project was to trial different methods and vendors of wind power forecasting to determine the best approach to forecasting wind power in Alberta in the future. Three vendors were chosen with global forecasting experience


Current and recent projects coordinated by WEPROG

DEWEPS project (2009-2012)

DEWEPS - Development and Evaluation of a new wind profile theory with an Ensemble Prediction System (2009-2011). A research project funded by the Danish PSO-F&U FORSKEL 2009-2012 funds coordinated by WEPROG ApS.

Project reports can be downloaded here.

HREnsembleHR project (2006-2009)

HREnsembleHR - High resolution Ensemble at Horns Rev, Denmark (2006-2009)
http://hrensemble.weprog.net

A research project funded by the Danish PSO-F&U FORSKEL 2006-2010 funds coordinated by WEPROG ApS, Denmark. In this project, the consortium combines developments in ocean, weather and wind power prediction in order to produce a realistic variability of the wind offshore, to make use of the advantages from an ensemble of forecasts, and to study the interactions between the sea surface and the atmosphere. p>

Project reports can be downloaded here.